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SUBJECT: Determining correct location of interfaces in x-ray images

I. SUMMARY

X-ray phase-contrast enhanced imaging enables characterization of objects otherwise

transparent to x-rays. Such imaging is accomplished with a point-source or plane-wave x-rays

and in the simplest implementation takes advantage of the refraction of x-rays at interfaces to

provide contrast. The refraction of x-rays, while small, can lead to measurable displacements

of interfaces in the image plane. A simple approximate analytical expression is obtained for

the required correction. The resulting expression is verified with a full raytrace calculation.

II. INTRODUCTION

Advances in micro-focus x-ray sources and synchrotron imaging has enabled phase-

contrast methods for x-rays in many applications. NIF ignition targets can be characterized

by phase-contrast methods as was recently demonstrated in a collaboration between NIF

and Engineering divisions. Phase-effects are always present in x-ray characterizations, even

when not specifically used in imaging. The refractive nature of objects, while very weak at

x-ray wave-lengths, will shift the apparent position of features in an object as observed in an

image. This shift needs to be correctly determined for accurate dimensional characterization

of objects. This memo outlines a simple approximation for spherical objects to translate the

position of a feature in the image plane to its real position in the object plane.

Figure 1 shows the geometry of the problem. X-rays enter the spherical object from the

left and are refracted at each interface. For simplicity, parallel rays are assumed, with the

1



extension to a point source discussed later. The concentric spherical surfaces bound different

materials and x-rays will be refracted at each interface. Once the x-ray leaves the shells, it will

travel at angle φi to the detector a distance ∆z from the center of the sphere. The offset ∆ρ

of the ray at the detector from its incident position can be determined once φi is known.

φ i ∆ρα

ρ R1

R2
R3

δ 2δ1 δ 3

Z∆

FIG. 1: Geometry of the problem. A ray enters a distance ρ from the center of the concentric

spheres. The ray is refracted at each interface where the real part of the refractive index is 1-δi.

After leaving the sphere, it travels a distance ∆z to the detector.

The absorption will be neglected in this calculation since it does not contribute to the de-

flection of the x-rays. Each material is characterized by the real-part of the refractive index,

commonly written as ni = 1 − δi, where i denotes each material in the problem and δ << 1.

Since δ is small, the x-rays are deflected by a small amount, allowing approximations to the

problem.

III. CALCULATION

Consider first a solid sphere of one material but with a “feature” inside located at radial

position ρ from the center. We want to determine the offset of the feature in the image plane

with respect to its position in the sphere, ∆ρ in Fig. 1. The ray starting at ρ intersects the

sphere at position z = −

√

R2
1 − ρ2. The surface normal for the sphere is given by α =

arctan(ρ/z) = arctan(−ρ/
√

R2
1 − ρ2). The angle of incidence is θ = α − 0 for parallel rays.

Using Snell’s law,

θ1 = arcsin
(

n0

n1

sin(θ0)
)

= arcsin
(

1

1 − δ1

sin(θ0)
)
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≈ arcsin ((1 + δ1) sin(θ0)) . (1)

A Taylor expansion of arcsin((1 + δ1) sin(θ0) about δ1 = 0 gives

arcsin (sin(θ0) + δ1 sin(θ0)) ≈ arcsin(sin(θ0)) +
δ1 sin(θ0)

√

1 − sin(θ0)2

≈ θ0 + δ1

sin(θ0)

cos(θ0)

≈ θ0 + δ1 tan(θ0)

θ1 ≈ θ0 + δ1

−ρ
√

R2
1 − ρ2

. (2)

This is the refracted angle. The ray travels in the direction of φ1 = α − θ1, so the deflected

angle is

φ1 = δ1

ρ
√

R2
1 − ρ2

. (3)

The ray then proceeds to the other side of the sphere where it is refracted again. Because

the deflected angle is small, on the order of 10−5 radians, it is a very good approximation to

simply take the second point the ray hits at the same ρ from above. In this case, the deflection

after leaving the sphere is simply double that calculated in Eq. 3. Thus for a detector placed a

distance ∆z from the sphere, the position for this ray will be offset from ρ by

∆ρ = 2 tan(φ1)∆z

≈

2δ1∆zρ
√

R2
1 − ρ2

(4)

Thus the deflection depends on the radius of the sphere and material property in a simple

expression.

The formulation for multiple spherical surfaces is similar at the level of approximation used

above. Since the rays are only weakly deflected at each surface, the same impact parameter

ρ can be used for each surface. The deflections at each surface will add to that of the previous

surface. Following the above formulation, the deflection of rays passing though two spherical

surfaces is

∆ρ = 2∆z



δ1

ρ
√

R2
1 − ρ2

+ (δ2 − δ1)
ρ

√

R2
2 − ρ2



 . (5)

This process is repeated for each of the N interfaces the ray passes through, giving

∆ρ = 2ρ∆z
N
∑

i=1

(δi − δi−1)
√

R2
i − ρ2

, (6)
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where δ0 = 0 is the vacuum.

The analysis can also be extended to point-projection microscopes when the maximum

incident angle is not too large. For a point source a distance d1 and detector d2 from the

object, the equivalent plane-wave propagation distance is ∆zeff = d1d2

d1+d2

.

IV. EXAMPLES
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FIG. 2: Raytraced 105 µm wall Be capsule with 150 µm thick DT solid inside. X-ray energy of 8

keV is assumed and the detector distance ∆z is 490 mm. The left image shows the full region of

interest while the right is near the outer Be shell radius. The blue arrows mark the interfaces as

defined in the model.

The calculation is compared to computational raytrace results to verify its validity. A solid

D-T layer inside of a beryllium shell was used as the test problem. The Be shell has outer

radius RB of 1077 µm and inner radius Ri = 972 µm. The D-T solid has an inner surface with

radius of Rs = 822 µm. The material properties are δBe = 5.6e-6 and δDT = 6.5e-7, appropriate

for 8 keV x-rays. Vacuum is assumed outside the Be shell. ∆z is set to 490 mm and the

detector pixel size is 0.39 µm to clearly demonstrate the interface movement.

Each interface corresponds to a dark band in the image due to the strong refraction of the

x-rays passing nearly tangent to the surface. The x-rays at the outer edge of the dark band

are those passing just outside the radius of a spherical surface. Thus the outer edge will be

slightly offset in the image according to Eq. 4. The interface Ri is expected to shift by 11.5 µm

using Eq. 4 and Rs is expected to shift -1.2 µm using Eq. 5.

Figure 2 shows the raytrace result covering all the interfaces and close to RB. The edge at
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RB is not expected to shift because those rays passing the outside surface are not refracted.

Figure 3 shows the raytrace result close to Ri and Rs. The surface position in the model is

shown with the blue arrow marking Ri and Rs respectively. The predicted surface according

to Eq. 4 is shown with the magenta arrow. The raytrace results agree well with Eq. 4.
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FIG. 3: Raytraced 105 µm wall Be capsule with 150 µm thick DT solid inside. The left image is

near Rs and the right is near Ri. The blue arrows mark the interface as specified in the raytrace

model while the magenta arrow shows the position as calculated from Eq. 5 and Eq. 4 for the left

and right images respectively.

V. CALCULATING THE CAUSTIC POSITION

The above calculation shows the position of the outer edge, that which is effectively ob-

scured by the refraction. The edge described above is not the strongest interface feature.

Rather, the strong intensity increase is associated with the the caustic. The position of the

caustic in an image can be determined using calculations in Landen’s memo[1]. The width of

the fringe is subtracted from the edge as determined using Eq. 4 to give the caustic position.

Using the geometry in Fig. 1, Landen’s expression for the width of the dark band at Ri is

ic = 3
(

∆z (δBe − δDT )
√

Ri/2
)2/3

. (7)

The predicted caustic position is compared to the raytrace results. For the cases shown in

the figures, the predicted caustic position is 940.9 µm, while in the raytrace the edge appears

at 941 µm for Ri. The DT solid-vapor interface is predicted to be at 810.4 µm, while it appears

5



at 810.9 µm in the raytrace model. The small difference is likely due to the refraction of the

caustic at the outer capsule surface.

VI. COMPARISON TO FRESNEL PROPAGATION

For the large ∆z in the examples, diffraction plays a significant role. The diffraction is often

smoothed in experiments because of the source size and detector resolution. Figures 4 and 5

show a Fresnel calculation convolved with a σ = 2 µm Gaussian along with the raytrace results.

Also included is the raytrace convolved with a Gaussian response. While the position of the

edges is nearly identical for all cases, the Fresnel propagation calculation has a significantly

different shape. The peak–valley difference in intensity is considerably smaller than in the

raytrace.
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FIG. 4: Comparison of raytrace with no aberrations, raytrace with a Gaussian blurring, and a

Fresnel propagation with Gaussian blurring. The left image is near the DT solid–vapor interface

and the right is at the DT solid–Be interface. The edges are located at approximately the same

position, however there is a significant difference in the shape of the edges using Fresnel propagation.

[1] “Refraction Enhanced Imaging from Curved Interfaces”, 2004.
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FIG. 5: Comparison of raytrace with no aberrations, raytrace with a Gaussian blurring, and a

Fresnel propagation with Gaussian blurring at the outer Be capsule surface.
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